Effects of diabetes and insulin on betaine-homocysteine S-methyltransferase expression in rat liver.

نویسندگان

  • Shobhitha Ratnam
  • Enoka P Wijekoon
  • Beatrice Hall
  • Timothy A Garrow
  • Margaret E Brosnan
  • John T Brosnan
چکیده

Elevation of plasma homocysteine levels has been recognized as an independent risk factor for the development of cardiovascular disease, a major complication of diabetes. Plasma homocysteine reflects a balance between its synthesis via S-adenosyl-L-methionine-dependent methylation reactions and its removal through the transmethylation and the transsulfuration pathways. Betaine-homocysteine methyltransferase (BHMT, EC 2.1.1.5) is one of the enzymes involved in the remethylation pathway. BHMT, a major zinc metalloenzyme in the liver, catalyzes the transfer of methyl groups from betaine to homocysteine to form dimethylglycine and methionine. We have previously shown that plasma homocysteine levels and the transsulfuration pathway are affected by diabetes. In the present study, we found increased BHMT activity and mRNA levels in livers from streptozotocin-diabetic rats. In the rat hepatoma cell line (H4IIE cells), glucocorticoids (triamcinolone) increased the level and rate of BHMT mRNA synthesis. In the same cell line, insulin decreased the abundance of BHMT mRNA and the rate of de novo mRNA transcription of the gene. Thus the decreased plasma homocysteine in various models of diabetes could be due to enhanced homocysteine removal brought about by a combination of increased transsulfuration of homocysteine to cysteine and increased remethylation of homocysteine to methionine by BHMT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticoadrenal activity in rat regulates betaine-homocysteine S-methyltransferase expression with opposite effects in liver and kidney.

Betaine-homocysteine S-methyltransferase (BHMT) is an enzyme that converts homocysteine (Hcy) to methionine using betaine as a methyl donor. Betaine also acts as osmolyte in kidney medulla, protecting cells from high extracellular osmolarity. Hepatic BHMT expression is regulated by salt intake. Hormones, particularly corticosteroids, also regulate BHMT expression in rat liver. We investigated t...

متن کامل

Tissue-specific alterations of methyl group metabolism with DNA hypermethylation in the Zucker (type 2) diabetic fatty rat.

BACKGROUND Altered methyl group and homocysteine metabolism were tissue-specific, persistent, and preceded hepatic DNA hypomethylation in type 1 diabetic rats. Similar metabolic perturbations have been shown in the Zucker (type 2) diabetic fatty (ZDF) rat in the pre-diabetic and early diabetic stages, but tissue specificity and potential impact on epigenetic marks are unknown, particularly duri...

متن کامل

Homocysteine metabolism in ZDF (type 2) diabetic rats.

Mild hyperhomocysteinemia is a risk factor for many diseases, including cardiovascular disease. We determined the effects of insulin resistance and of type 2 diabetes on homocysteine (Hcy) metabolism using Zucker diabetic fatty rats (ZDF/Gmi fa/fa and ZDF/Gmi fa/?). Plasma total Hcy was reduced in ZDF fa/fa rats by 24% in the pre-diabetic insulin-resistant stage, while in the frank diabetic sta...

متن کامل

High homocysteine induces betaine depletion

Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasm...

متن کامل

Folate status modulates the induction of hepatic glycine N-methyltransferase and homocysteine metabolism in diabetic rats.

A diabetic state induces the activity and abundance of glycine N-methyltransferase (GNMT), a key protein in the regulation of folate, methyl group, and homocysteine metabolism. Because the folate-dependent one-carbon pool is a source of methyl groups and 5-methyltetrahydrofolate allosterically inhibits GNMT, the aim of this study was to determine whether folate status has an impact on the inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006